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Abstract

Modern ebolavirus diagnostics rely primarily on quantitative reverse transcription-polymerase 

chain reaction (qRT-PCR), a sensitive method to detect viral genetic material in the acute phase of 

the disease. However, qRT-PCR does not confirm presence of infectious virus, presenting 

limitations in patient and outbreak management. Attempts to isolate infectious virus rely on in 

vivo or basic cell culture approaches, which prohibit rapid results and screening. In this study, we 

present a novel reporter cell line capable of detecting live ebolaviruses. These cells permit 

sensitive, large-scale screening and titration of infectious virus in experimental and clinical 

samples, independent of ebolavirus species and variant.
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Detecting ebolavirus ribonucleic acid (RNA) in patient samples by quantitative reverse 

transcription-polymerase chain reaction (qRT-PCR) is a sensitive, first-line method readily 

adapted to the outbreak setting. However, a positive qRT-PCR result does not consistently 

equate to presence of infectious virus [1]. Moreover, minor differences in nucleotide 

sequence may render existing qRT-PCR assays unable to detect an emerging virus. 

Technically, qRT-PCR is easily scaled up and increasingly automated, whereas infectivity 

determination by virus isolation remains a more laborious task confined to biosafety level 4 

(BSL-4) laboratories. Our standard ebolavirus isolation protocol includes inoculation of 

Vero-E6 cells, with fixation and immunostaining of the cell monolayer on days 7 and 14 

postinfection; this procedure prohibits rapid results. In this work, we establish a reporter cell 
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line that produces a robust fluorescence signal in response to ebolavirus infection. We have 

validated this system using stocks of all 5 known virus species of the Ebolavirus genus, as 

well as virus-spiked human blood and serum samples and clinical samples from past 

outbreaks. Practical and scalable quantification of infectious Ebola virus and related viruses 

leaves us better prepared to conduct virus persistence studies and to detect emerging viruses 

in this important genus.

METHODS

Viruses and Biosafety

The following stock viruses were used in the study: Ebola virus/H. sapiens-tc/COD/1976/

Yambuku-Mayinga, Sudan virus/H.sapiens-tc/UGA/2000/Gulu-808892, Reston virus/

M.fascicularis-tc/USA/1989/Philippines89-Pennsylvania, Bundibugyo virus/H. sapiens-

tc/UGA/2007/Butalya-811250, Taï Forest virus/H.sapiens-tc/CIV/1994/Pauléoula-CI, and 

Marburg virus/R.aegyptiacus-tc/UGA/2007/Kitaka-371Bat-811277. All work with infectious 

virus was performed in a BSL-4 facility at the Centers for Disease Control and Prevention 

(CDC).

Reporter Cell Line

Gene synthesis (Integrated DNA Technologies, Coraville, IA) was used to generate a 

negative-sense minigenome that was initially assembled in the pcDNA5/FRT vector 

(Invitrogen, Waltham, MA) using InFusion HD cloning (Clontech, Mountain View, CA). 

The minigenome is driven by the constitutive cytomegalovirus (CMV) promoter and 

transcribed by host RNA polymerase II. The transcript contains a hammerhead ribozyme at 

the 5′ end to produce an exact RNA end mimicking that of Ebola virus Makona variant 

genome (GenBank sequence KP178538.1). The hammerhead ribozyme used here was 

modeled on the optimization work presented by Yun et al [2] and corresponds to the 

ribozyme A sequence presented there with the following modifications: stem I (which 

provides specificity) includes a 7-nucleotide complementarity with Ebola Makona trailer end 

(GGACACA), and the sequence upstream of this stem is from the vector. The minigenome 

transcript begins with the 176 base minimal promoter region as identified in defective-

interfering Ebola virus particles [3], followed by L messenger RNA (mRNA) untranslated 

region (UTR) between the polyadenylation signal and stop codon. The minimal promoter 

region ends in a U base, and the adjacent polyadenylation signal contains a 6 U stretch. The 

total number of U bases at the junction was left at 6. A codon-optimized sequence for 

zsGreen ([ZSG] Clontech) in negative sense orientation is followed by the Ebola Makona 

sequences preceding the nucleoprotein open reading frame, and the transcript 3′ end is 

trimmed by the “supercut” hepatitis delta virus ribozyme [4]. After initial optimization work 

(data not shown), the minigenome was transferred into the piggyBac transposon vector PB-

CMV-MCS-EF1-Puro (System Biosciences, Palo Alto, CA) using NheI and NotI restriction 

sites.

To generate stable cell lines, the resulting piggyBac construct was transfected into Vero-E6 

cells together with the Super piggy-Bac Transposase construct (System Biosciences) using 

TransIT LT1 reagent (Mirus Bio, Madison, WI) according to manufacturers’ instructions. 
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Three days after transfection, cells were trypsinized and seeded on cell culture dishes as a 

dilution series. Clones were selected and expanded under 30 μg/mL puromycin. Once 

enough cells were obtained, clones were ranked by minigenome activation after infection 

with Ebola virus, and the best-performing clones were expanded further. One such clone was 

chosen after additional experiments, and it was used here as the Vero-Ebola-reporter cell 

line. Characterization of the minigenome expression is presented in Supplementary Figure 1.

Sensitivity Assays

Aliquots of diluted virus stocks were repeatedly titered by 50% tissue culture infectious dose 

(TCID50) assays using 6 replicate wells of Vero-E6 cells and Vero-Ebola-reporter cells in 

parallel. Dilution series were prepared in medium containing 2% fetal calf serum, and 40 μL 

inoculum were used in each well of a 96-well plate. After 1-hour incubation at 37°C, the 

inocula were removed and medium without phenol red was added. The apparent titers on 

Vero-Ebola-reporter cells, as indicated by presence of ZSG-positive cells, were recorded on 

specified days postinfection until day 7, when the monolayers were fixed and 

immunostained using rabbit polyclonal antibodies detecting all known species of the genus 

Ebolavirus (in-house reagent 703371). Marburg virus was detected using rabbit polyclonal 

antibodies (reagent 703358). Quantification data of the ZSG signals upon infection are 

presented in Supplementary Figure 2.

To simulate low-titer clinical samples, healthy donor serum and ethylenediaminetetraacetic 

acid (EDTA) blood samples were spiked with stock viruses so that 95% of the mix was 

blood/serum. The spiked samples were aliquoted and frozen; a new vial was used for each 

repeat of the experiment. Spiked samples were inoculated neat and as dilution series in 

phosphate-buffered saline (PBS). The TCID50 assays were performed as described above, 

except that for blood samples, the cells were washed once with PBS after removing the 

inocula.

Clinical samples obtained during historical outbreak investigations were selected based on 

their known infectivity status. These samples were tested the same way as the spiked blood 

samples; however, due to limited sample volumes, 1:10 dilution in PBS was the lowest 

dilution inoculated, and the experiment was done only once. All storage conditions and 

number of freeze-thaw cycles from the place of collection to the laboratory could not be 

ascertained for the clinical samples, and the absolute infectivity values determined did not 

necessarily reflect the values of the same samples at time of collection. Centers for Disease 

Control and Prevention Institutional Review Board (IRB) approval was obtained for the use 

of historical diagnostic material; the IRB waived the requirement to obtain informed consent 

for this secondary use of archived samples. Healthy donor blood was obtained with informed 

consent under a separate IRB-approved research protocol.

RESULTS

Our reporter cell system uses an Ebola virus minigenome expression cassette (Figure 1A and 

Supplementary Figure 1) that was introduced into Vero-E6, our standard cell line for 

ebolavirus isolation, by a transposon system. Upon infection, the viral replication complex 

recognizes promoters on the minigenome RNA and uses it as template to transcribe mRNA 

Kainulainen et al. Page 3

J Infect Dis. Author manuscript; available in PMC 2018 December 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



for the fluorescent protein, ZSG. Infectious virus can therefore be detected by monitoring 

ZSG fluorescence in live cells without additional reagents. As seen in Figure 1B, Ebola virus 

infection results in strong ZSG signals in a subset of infected Vero-Ebola-reporter cells, 

distinguishing infected from non-infected cultures. Importantly, infections with the other 

members of the Ebolavirus genus (Sudan, Bundibugyo, Reston, and Taï Forest viruses) also 

resulted in strong ZSG fluorescence, demonstrating that our system can detect multiple 

species of ebolaviruses with only minor differences in the activation potential (quantified in 

Supplementary Figure 2). The more distantly related filovirus, Marburg virus, could not 

activate the reporter.

Having established that infected Vero-Ebola-reporter cultures could be identified by the ZSG 

signal, we next evaluated the sensitivity of the system in comparison with virus detection by 

the standard immunofluorescence assay. We reasoned that titer determinations by the 

TCID50 method would serve this purpose. In this assay, replicate wells are infected with 10-

fold serial dilutions of the sample until no infectivity remains. Therefore, reduced sensitivity 

would manifest as failure to detect ZSG in the highest dilutions where live virus actually still 

exists, leading to reduced titer values. Apparent titers were determined daily by the reporter 

assay to assess the time required for reliable results. As shown in Figure 2A, all 5 

ebolaviruses could be quantified using the reporter cells. By day 7, titer values determined 

by ZSG reporter signal closely resembled the values obtained by immunofluorescence on 

Vero-E6 cells, indicating that the sensitivity of the Vero-Ebola-reporter system is similar to 

that of the standard assay.

Next, the system was tested with material relevant for diagnostics and virus discovery. In 

contrast to stock titration, detecting low levels of infectivity in clinical material may be 

hindered by exposure of cell monolayers to high concentrations of viscous original sample. 

For a stringent test, human EDTA blood and serum were spiked with Ebola or Sudan virus 

stocks to obtain 2 samples with infectivity values close to the TCID50 detection limit. As 

shown in Figure 2B, live Ebola or Sudan viruses in the 3–4 log/mL range could be 

reproducibly detected in blood by day 3, and <2-log/mL concentrations could be detected by 

day 4. Similar results were obtained with spiked serum samples. Mock-spiked control blood 

and serum samples tested negative in both TCID50 and Vero-Ebola-reporter cell line assays 

(data not shown).

Finally, actual clinical material was tested. Original samples known to contain live virus at 

unknown titers were selected; Ebola, Sudan, and Bundibugyo viruses, the 3 viruses known 

to cause major outbreaks in humans, were represented. All 3 viruses could be detected 

directly from clinical material (Figure 2C). Two samples (Ebola and Bundibugyo) at 

relatively high 5-log and 6-log/mL titers, respectively, could be judged positive by as early 

as 24 hours postinfection. One Sudan sample with 3-log/mL infectivity, as well as 2 samples 

(Ebola and Bundibugyo) with infectivity below the quantification limit, produced positive 

results in the Vero-Ebola-reporter system by day 3 postinfection. One Sudan sample was 

negative on Vero-E6 cells but positive on Vero-Ebola-reporter cells (1 of 6 wells on day 7).
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DISCUSSION

Molecular methods, such as qRT-PCR, have rightly become the first-line method to diagnose 

cases of Ebola virus disease. However, there is no substitute for culturing clinical samples in 

vitro or in vivo to determine presence of live virus and transmission risk. The rapid advances 

in the field of molecular diagnostics have not reached virus isolation, which remains largely 

manual work. Reporter cell systems have emerged to bridge the gap for some viruses, yet 

expanding the approach is not trivial; the technical principle used necessarily depends on the 

biology of the virus in question. Viruses whose genomes exist as deoxyribonucleic acid 

(DNA) in host nuclei, including herpesviruses and lentiviruses, have been detected after 

stable integration of plasmids with reporter genes under viral promoters [5, 6]. Infection 

activates transcription of the reporter gene from the DNA template. Reporter cell lines for 

RNA viruses must rely on alternative principles. Flaviviruses [7] and enteroviruses [8] have 

been detected by linking cleavage of specific peptide sequences by viral proteases with 

reporter activation. Influenza, a negative-strand RNA virus with a nuclear replication cycle, 

has been detected using the minigenome approach [9]. A stable minigenome cell line has 

also been developed for a positive-strand RNA virus with a cytoplasmic replication cycle 

[10].

In this study, we use the minigenome principle to cover viruses of genus Ebolavirus, which 

are negative-strand RNA viruses with a cytoplasmic replication cycle. This work was 

inspired by other groups that have previously reported on successful swapping of Ebola and 

Reston virus replication complexes and minigenomes, providing evidence that viruses within 

the genus Ebolavirus have conserved transcription and replication signals [11–13]. Some 

experimental systems have even indicated that this cross-activation extends to Marburg virus 

[12, 13], but in other systems [11, 14], as well as ours, such cross-activation was not 

observed. Indeed, our system detects all 5 known ebolaviruses in stock samples and all the 

tested ones in patient serum and blood. We consider cross-activation by multiple 

ebolaviruses advantageous, because detecting any type of ebolavirus, especially in clinical 

material, is arguably a situation of public health concern. Although the assay involves 

growing live ebolaviruses and is therefore confined to BSL-4 laboratories, it is easily 

scalable and simple to perform, considerably increasing the capacity to detect infectious 

virus. We intend to use the cell line in projects involving ecological and clinical samples 

potentially containing live Ebola virus and its relatives, those known to date, and those that 

may yet be discovered.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Ebola virus minigenome schematic and reporter cell activation by different filoviruses. (A) 

Schematic presentation of Ebola virus genome and the minigenome cassette. (B) Activation 

of zsGreen (ZSG) reporter upon infection. Vero-E6 cells and Vero-Ebola-reporter cells were 

infected at multiplicity of infection = 0.5 and immunostained 3 days postinfection. 

Abbreviations: CMV prom., cytomegalovirus promoter; GPC, glycoprotein precursor; 

HDVRz, hepatitis delta virus ribozyme; HHRz, hammerhead ribozyme; L, ribonucleic acid 

(RNA)-dependent-RNA-polymerase; NP, nucleoprotein; UTR, untranslated region; VP, viral 

protein; ZSG, zsGreen; α-Virus, immunostaining against the virus with specific antibodies.
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Figure 2. 
Quantifying infectious virus with the reporter cell line. All inserts represent virus titer values 

as 50% tissue culture infectious dose (TCID)50/mL. (A) Stock virus titration. (B) 

Ethylenediaminetetraacetic acid blood and serum samples spiked with Ebola or Sudan 

viruses at 2 concentrations. (C) Clinical samples. Green bars represent titers determined by 

zsGreen (ZSG) signal. Orange and red bars represent titers determined by immunostaining 

on Vero-Ebola-reporter cells and Vero-E6 cells, respectively. Day postinfection is depicted 

by numbers, and positive (all repeats) or negative results are depicted by +/− symbols. 

Dashed horizontal lines indicate TCID50 quantification limit. Open bars below 

quantification limit represent time points at which live virus was detected in all repeat 

experiments, but at least 1 repeat did not produce enough signal for TCID50 calculation. A 
and B represent averages and standard deviations from 3 independent experiments. C 
presents a single experiment. Abbreviation: DRC, Democratic Republic of the Congo.
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